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Abstract. Starting from the Einstein-Podolsky-Rosen entangled state representations of continuous vari-
ables we derive a new formulation of complex fractional Fourier transformation (CFFT). We find that
two-variable Hermite polynomials are just the eigenmodes of the CFFT. In this way the CFFT is linked to
the appropriate operator transformation between two kinds of entangled states in the context of quantum
mechanics. In so doing, the CFFT of quantum mechanical wave functions can be derived more directly
and concisely.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities,
GHZ states, etc.) – 42.30.Lr Modulation and optical transfer functions – 42.50.Dv Nonclassical field
states; squeezed, antibunched, and sub-Poissonian states; operational definitions of the phase of the field;
phase measurements

1 Introduction

Since the publication of the paper of Einstein, Podolsky
and Rosen (EPR) in 1935 [1], arguing the incompleteness
of quantum mechanics, the conception of entanglement
has become more and more fascinating and important,
though it is also weird. EPR noticed that in an entangled
state, measurement performed on one part of a bipartite
system provides information on the remaining part. In
reference [2] according to the original idea of EPR that
two particles’ relative coordinate operator commutes with
their total momentum operator, [X1 − X2, P1 + P2] = 0,
Fan and Klauder have constructed the entangled state rep-
resentation in two-mode Fock space, which is the common
eigenvector of X1 − X2 and P1 + P2, i.e.,

|η〉 = exp
[
−1

2
|η|2 + ηa†

1 − η∗a
†
2 + a

†
1a

†
2

]
|00〉 ,

η = η1 + iη2 = |η|eiϕ, (1)

where |00〉 is the vacuum state, Bose operators (a†
1, a

†
2)

are related to Xi and Pi, (i = 1, 2) by Xi = (ai + a†
i )/

√
2,
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Pi = (ai − a†
i )/

√
2 i. Using [ai, a

†
j ] = δij , we can show(

a1 − a
†
2

)
|η〉 = η |η〉 ,

(
a2 − a

†
1

)
|η〉 = −η∗ |η〉 . (2)

η′s real and imaginary part are the eigenvalue of X1 −
X2 and P1 + P2, respectively, i.e.,

(X1 − X2) |η〉 =
√

2η1 |η〉 , (P1 + P2) |η〉 =
√

2η2 |η〉 .
(3)

On the other hand, we have introduced another EPR en-
tangled state |ξ〉,

|ξ〉 = exp
[
−|ξ|2

2
+ ξa†

1 + ξ∗a†
2 − a†

1a
†
2

]
|00〉 , ξ = ξ1 + iξ2,

(4)

which is the common eigenvector of P1−P2 and X1 +X2,

(X1 + X2) |ξ〉 =
√

2 ξ1 |ξ〉 , (P1 − P2) |ξ〉 =
√

2 ξ2 |ξ〉 .
(5)

Due to

[X1 − X2, P1 − P2] = 2i, [X1 + X2, P1 + P2] = 2i, (6)

we conclude that |ξ〉 and |η〉 are mutual conjugate states.
The overlap between 〈η| and |ξ〉 is [3]

〈η| ξ〉 =
1
2
e

ξη∗−ξ∗η
2 . (7)
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The transformation from |ξ〉 to |η〉 (or the transforma-
tion vice versa) can be considered a 2-dimensional Fourier
transformation in complex form. 〈η|ξ〉 is the transforma-
tion kernel. Then a question naturally arises: Can this
complex transformation be extended to the correspond-
ing complex fractional Fourier transformation (CFFT)?
As is well-known that the 1-dimensional Fractional Fourier
Transformation (FFT) of real functions, which was firstly
introduced mathematically in 1980 by Namias [4] and later
by McBride and Kerr [5], has their optical implementa-
tion. In 1993, Mendlovic, Ozaktas and Lohmann [6,7] de-
fined αth FFT physically, based on light propagation in
quadratic graded-index media (GRIN media with medium
parameters n(r) = n1 − n2r

2/2), as follows: let the orig-
inal function be input from one side of quadratic GRIN
medium, at z = 0. Then, the light distribution observed
at the plane z = z0 corresponds to the α equal to
the (z0/L)th fractional Fourier transform of the input frac-
tion, where L ≡ (π/2)(n1/n2)1/2 is a characteristic dis-
tance. The α equal to the first Fourier transform, observed
at z0 = L, corresponds to the ordinary Fourier transform,
by design. Another approach for introducing FFT was
made by Lohmann [8] who pointed out the algorithmic iso-
morphism among image rotation, rotation of the Wigner
distribution function, and fractional Fourier transforming.
Lohmann proposed the FFT as the transform performed
on a function that leads to a rotation with an angle of the
associated Wigner distribution function.

Regarding the quantum homodyne tomography with
use of the Wigner transformation we referee to the works
of Smithey et al. [9] and Vogel and Risken [10].

In this work we shall study the complex fractional
Fourier transform in the context of quantum mechanics,
to be more concrete, we shall employ the EPR entangled
state representation to establish a formulation of CFFT,
which means that we shall link the fractional Fourier
transformation of complex functions to appropriate oper-
ator transformation between two kinds of entangled state
representations. In so doing, the CFFT of quantum me-
chanical wave functions can be derived more directly and
concisely. Our work is arranged as follows: in Section 2 we
briefly review the major properties of |η〉 and |ξ〉. In Sec-
tion 3, starting from the entangled states we shall derive
the quantum version of the transformation kernel of CFFT
and define CFFT. In Section 4 we find the eigenmodes of
CFFT which turns out to be two-variable Hermite poly-
nomials. In Section 5 we derive CFFT of some quantum
mechanical wave functions. Note that Fourier transforms
are so important in modern optical engineering because
they arise naturally in optical lens setup, we hope that
CFFT introduced in this work may have widespread use
in quantum optical information processing.

2 Basic properties of the entangled
states |η〉 and |ξ〉
By using |00〉〈00| =: e−a†

1a1−a†
2a2 :, where : : stands for the

normal ordering, and the technique of integration within

an ordered product (the technique of IWOP) of opera-
tors [11,12] we can prove the completeness relation of |η〉,
∫

d2η

π
|η〉 〈η| =

∫
d2η

π
:e−|η|2+ηa†

1−η∗a
†
2+a†

1a
†
2+η∗a1−ηa2+a1a2−a†

1a1−a†
2a2:=1,

d2η = dη1dη2, (8)

where ai and a†
i are permutable within normal ordering

symbol : :, so they can be viewed as C-numbers while the
integration is going on, and orthonormal property

〈η′| η〉 = πδ (η − η′) δ (η∗ − η′∗) . (9)

In a recent paper [13] the coordinate-momentum entan-
glement concept has been extended to number-difference-
correlative amplitude based on the eigenvector equa-
tions [14]

√
a1 − a

†
2

a
†
1 − a2

|η〉 = eiϕ |η〉 ,
(
a1 − a

†
2

)(
a

†
1 − a2

)
|η〉= |η|2 |η〉.

(10)

In a similar manner, we can prove that |ξ〉 is also complete
and orthonormal∫

d2ξ

π
|ξ〉 〈ξ| = 1, 〈ξ′| ξ〉 = πδ (ξ − ξ′) δ (ξ∗ − ξ′∗) . (11)

The overlap between the two-mode coherent state [15]

|γ, β〉 = exp
[
−|γ|2 + |β|2

2
+ γa†

1 + βa†
2

]
|00〉 (12)

and the entangled states is

〈γ′, β′ |ξ〉 = exp
[
− |ξ|2

2
+ ξγ′∗ + ξ∗β′∗

− γ′∗β′∗ − |γ′|2
2

− |β′|2
2

]
,

〈η| γ, β〉 = exp
[
−1

2
|η|2 + η∗γ−ηβ+γβ − |γ|2

2
− |β|2

2

]
.

(13)

For later’s use we list the Schmidt decomposition of the
entangled states [16],

|η〉 = e−iη1η2

∫ ∞

−∞
dp
∣∣∣p +

√
2η2

〉
1
⊗ |−p〉2 e−i

√
2η1p,

|ξ〉 = e−iξ1ξ2

∫ ∞

−∞
dx |x〉1 ⊗

∣∣∣−x +
√

2ξ1

〉
2
ei
√

2xξ2 , (14)

where |x〉i (|p〉i) are coordinate (momentum) eigenstates.
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3 Complex fractional Fourier transformation
and EPR entangled states

Now we calculate the matrix element of exp[f(a†
1a1 +

a†
2a2)] between 〈η| and |ξ〉. Using (13) and the over-

completeness relation of |γ, β〉,
∫

d2γ

π

d2β

π
|γ, β〉 〈γ, β| = 1,

as well as the operator identity

efa†
1a1 =

∞∑
n=0

efn |n〉11 〈n| =
∞∑

n=0

efn a†n
1√
n!

|0〉11 〈0|
an
1√
n!

=
∞∑

n=0

efn :

(
a†
1a1

)n

n!
e−a†

1a1 :=: exp
[(

ef − 1
)
a†
1a1

]
:,

(15)

where |n〉1 is the number state, we have

〈η| exp
[
f
(
a†
1a1 + a†

2a2

)]
|ξ〉 =

〈η| : exp
[(

ef − 1
)(

a†
1a1 + a†

2a2

)]
: |ξ〉

=
∫

d2γ

π

d2β

π

∫
d2γ′

π

d2β′

π
〈η| γ, β〉 〈γ, β|

× : exp
[(

ef − 1
)(

a†
1a1 + a†

2a2

)]
: |γ′, β′〉 〈γ′, β′ |ξ〉

=
∫

d2γ

π

d2β

π

∫
d2γ′

π

d2β′

π
exp

{
− |η|2 /2 + η∗γ − ηβ

+ γβ − |γ|2 − |β|2 − |ξ|2/2 + ξγ′∗ + ξ∗β′∗ − γ′∗β′∗

− |γ′|2 − |β′|2 + ef (γ∗γ′ + β∗β′)

}
=

1
1 + e2f

× exp


−|η|2 + |ξ|2

2
+

ef
(
|η|2 + |ξ|2

)
+ (ξη∗ − ηξ∗)

e−f + ef


 .

(16)

Let f = i (π/2 − α), we have

〈η| exp
[
i (π/2 − α)

(
a†
1a1 + a†

2a2 + 1
)]

|ξ〉 =

1
2 sinα

exp

(
i
(|η|2 + |ξ|2)

2 tanα
+

ξη∗ − ηξ∗

2 sinα

)
. (17)

Especially, when α = π/2, equation (17) reduces to (7).
Now we take the right hand side of (17) as the kernel of
CFFT of α order, i.e., we define αth CFFT of a complex

function g(ξ) as Fα (g(ξ)) via the following relation,

Fα (g(ξ)) =
1

2 sinα
ei(α−π/2)

×
∫

d2ξ

π
exp

[
i
(|η|2 + |ξ|2)

2 tan α
+

ξη∗ − ξ∗η
2 sinα

]
g(ξ) ≡ G(η).

(18)

We will show later that this CFFT can help us to re-
veal some new property which has been overlooked in the
formulation of the direct product of two real FFTs. The
definition (18) is of course required to satisfy the basic
postulate that Fβ [Fαg(ξ)] = Fβ+α (g(ξ)) (the additivity
property). For this purpose, we examine

FβFα (g(ξ)) = Fβ [G(η)] =
1

2 sinβ
ei(β−π/2)

×
∫

d2η

π
exp

[
i
(|η|2 + |ξ′|2)

2 tanβ
+

ηξ′∗ − η∗ξ′

2 sin β

]
G(η)

=
1

4 sinα sin β
ei(α+β−π)

×
∫

d2η

π
exp

[
i
(|η|2 + |ξ′|2)

2 tanβ
+

ηξ′∗ − η∗ξ′

2 sin β

]

×
∫

d2ξ

π
exp

[
i
(|η|2 + |ξ|2)

2 tan α
+

ξη∗ − ξ∗η
2 sinα

]
g(ξ). (19)

Using the formula

cotα − sin β/[sinα sin (α + β)] =

cotβ − sin α/[sinβ sin (α + β)] = cot (α + β) , (20)

Equation (19) becomes

FβFα (g(ξ)) =
1

4 sinα sin β
exp

[
i|ξ′|2

2 tanβ

]
ei(α+β−π)

×
∫

d2ξ

π
exp

[
i|ξ|2

2 tanα

]
g(ξ)

∫
d2η

π

× exp
[
i|η|2
2

(cotβ + cotα) +
ηξ′∗ − η∗ξ′

2 sinβ
+

ξη∗ − ξ∗η
2 sinα

]

=
1

2 sin (α + β)
ei(α+β−π) exp

[
i|ξ′|2

2 tan (α + β)

]

×
∫

d2ξ

π
exp

[
i|ξ|2

2 tan (α + β)
+

i (ξ′ξ∗ + ξξ′∗)
2 sin (α + β)

]
g(ξ).

(21)

Let ξ′ ≡ iη′, ξ∗′ = −iη′∗, then i (ξ′ξ∗ + ξξ′∗) = ξη′∗ −
ξ∗η′, |ξ′|2 = |η′|2, in reference to the definition (18) we
finally see

FβFα (g(ξ)) = Fβ+α (g(ξ)) = Gβ+α(η′), (22)
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so the postulate is satisfied. As one can see shortly later,
according to the definition (18) the CFFT of a two-
variable Hermite polynomial is still a two-variable Hermite
polynomial, so our definition of αth CFFT is also phys-
ically based on propagation in quadratic graded-index
medium (GRIN), i.e., the change of the light field caused
by propagation along a quadratic GRIN medium by a
length proportional to α.

4 Eigenmodes of CFFT

Since equation (17) is the quantum version of the trans-
formation kernel of CFFT, it provides a new convenient
way to calculate the CFFT of complex functions. That
is, if we consider g(ξ) as 〈ξ| g〉, the wave function of the
state vector |g〉 in the 〈ξ| representation, then from equa-
tion (17), and the completeness relation (11) we see that
the CFFT (18) of 〈ξ| g〉 actually is

Fα (g(ξ)) = ei(α−π/2)

×
∫

d2ξ

π
〈η| exp

[
i (π/2 − α)

(
a†
1a1 + a†

2a2 + 1
)]

|ξ〉 〈ξ| g〉

= 〈η| exp
[
i (π/2 − α)

(
a†
1a1 + a†

2a2

)]
|g〉 ≡ G(η). (23)

Moreover, let G(η) ≡ 〈η| G〉, equations (8, 23) imply

|G〉 = exp
[
i (π/2 − α)

(
a†
1a1 + a†

2a2

)]
|g〉 . (24)

The formulas (11, 23) can help us to derive CFFT of some
wave functions easily. For example, when |g〉 is a two-
mode number state |m, n〉 = a†m

1 a†n
2 /

√
m!n! |0, 0〉, then

the CFFT of the wave function 〈ξ| m, n〉 is

Fα(〈ξ| m, n〉) = 〈η| exp
[
i (π/2−α)

(
a†
1a1+a†

2a2

)]
|m, n〉

= in+me−iα(m+n) 〈η| m, n〉 . (25)

To calculate 〈η| m, n〉, let us recall the definition of two-
variable Hermite polynomial Hm,n(ζ, ζ∗) [17],

Hm,n(λ, λ∗) =
min (m,n)∑

l=0

m!n!
l!(m − l)!(n − l)!

(−1)lλm−lλ∗n−l,

(26)

which is not a direct product of two independent single-
variable Hermite polynomials. Using the generating func-
tion of Hm,n(λ, λ∗),

∞∑
m,n=0

tmt′n

m!n!
Hm,n(λ, λ∗) = exp{−tt′ + tλ + t′λ∗}, (27)

we can expand 〈η| as

〈η| = 〈00|
∞∑

m,n=0

im+n am
1 an

2

m!n!
Hm,n(−iη∗, iη)e−|η|2/2, (28)

thus

〈η |m, n〉 =
im+n

√
m!n!

Hm,n(−iη∗, iη)e−|η|2/2. (29)

On the other hand, from

〈ξ| = 〈00| exp
{
−a1a2 + a1ξ + a2ξ

∗ − |ξ|2
2

}

= 〈00|
∞∑

m,n=0

am
1 an

2

m!n!
Hm,n(ξ, ξ∗)e−|ξ|2/2, (30)

we have

〈ξ |m, n〉 =
1√

m!n!
Hm,n(ξ, ξ∗))e−|ξ|2/2. (31)

As a result of (29) and (31) we see that equation (25)
becomes

Fα (e−|ξ|2/2Hm,n(ξ, ξ∗)) =

(−e−iα)m+ne−|η|2/2Hm,n(−iη∗, iη). (32)

If we consider the operation Fα as an operator, one can say
that the eigenfunction of Fα (the eigenmodes of CFFT)
is the two-variable Hermite polynomials Hm,n with the
eigenvalue being (−e−iα)m+n. This is a new property of
CFFT. Since the function space spanned by Hm,n(ξ, ξ∗)
is complete,

∫
d2ξ

π
e−|ξ|2Hm,n(ξ, ξ∗)H∗

m′,n′(ξ, ξ∗) =

√
m!n!m′!n′!δm′,mδn,n′ , (33)

and

∞∑
m,n=0

1
m!n!

Hm,n(ξ, ξ∗) [Hm,n(ξ′, ξ′∗)]∗ e−|ζ|2 =

πδ (ξ − ξ′) δ (ξ∗ − ξ′∗) , (34)

one can confirms that the eigenmodes of CFFT form
an orthogonal and complete basis set. Now let us re-
call one-dimensional real variable fractional Fourier trans-
form (FFT) of α order, defined in [4–8] as

fα(k(x)) =

√
exp [−i (π/2 − α)]

2π sin α

×
∫ ∞

−∞
exp

{
i(x2 + p2)
2 tanα

− ixp

sin α

}
k (x) dx ≡ G(p) (35)

(the usual Fourier transformation is a special case with
order α = 1). By direct checking one can see [6–8]

fα(e−x2/2Hn (x)) = e−iαne−p2/2Hn(p), (36)

where Hn is the single-variable Hermite polynomials.
Thus the eigenfunction of fα(the eigenmodes of FFT) is
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the single-variable Hermite-Gauss function [6–8] with the
eigenvalue being e−iαn. An extension to two lateral co-
ordinates x and y is straightforwardly the direct product
of two independent single-variable Hermite polynomials
Hn (x) Hm(y) as explained in [6]. Because the two-variable
Hermite polynomials is not the direct product of two inde-
pendent single-variable Hermite polynomials, it has been
overlooked by the users of direct product of two single
real-variable FFTs, only the CFFT defined as (18) helps
to reveal the new property of CFFT.

Now let us compare the transformation kernel of CFFT
with that of the direct product of two single real-variable
FFTs in more detail. The latter in (35) can be proved
equal to the following matrix elements in the momentum
state i 〈p| and the coordinate state |x〉i ,

2∏
i=1

exp
{

i(x2
i + p2

i )
2 tanα

− ixipi

sin α

}
= 2πi sin αe−iα

1 〈p| ⊗2 〈p|

× exp
[
i (π/2 − α)

(
a†
1a1 + a†

2a2

)]
|x〉1 ⊗ |x〉2 , (37)

in contrast, from (14) we see that the transformation ker-
nel of CFFT in (17) is equal to

1
2 sinα

exp

(
i
(|η|2 + |ξ|2)

2 tan α
+

ξη∗ − ηξ∗

2 sinα

)

= eiη1η2−iξ1ξ2

∫ ∞

−∞
dp1

〈
p +

√
2η2

∣∣∣⊗2 〈−p| ei
√

2η1p

× exp
[
i (π/2 − α)

(
a†
1a1 + a†

2a2 + 1
)]

×
∫ ∞

−∞
dx |x〉1 ⊗

∣∣∣−x +
√

2ξ1

〉
2
ei
√

2xξ2 . (38)

Therefore we see that, so far as the quantum version of
transformation kernel is concerned, the CFFT is different
from the direct product of two real FFTs

5 Some wave functions’ CFFT

Equation (23) provides us with a new approach for calcu-
lating the CFFT of quantum mechanical wave functions
in the 〈ξ| representation. For instance, when |g〉 is a un-
normalized two-mode coherent state |γ, β〉 = exp[γa†

1 +
βa†

2]|0, 0〉, then from (13) we see that the CFFT of this
coherent state wave function is

Fα (〈ξ |γ, β〉) = 〈η| exp
[
i (π/2 − α)

(
a†
1a1 + a†

2a2

)]
|γ, β〉

= 〈η ∣∣ie−iαγ, ie−iαβ
〉

=exp

[
−|η|2

2
+ie−iαη∗γ−ie−iαηβe−2iα−γβ− |γ|2

2
− |β|2

2

]
.

(39)

When |g〉 is a two-mode squeezed vacuum state,

|g〉 → S |0, 0〉 = sec hλ exp
[
a†
1a

†
2 tanhλ

]
|0, 0〉 , (40)

where S is the squeezing operator, in 〈ξ| representation it
can be expressed as [18]

S =
√

µ

∫
d2ξ

π
|ξµ〉 〈ξ| , µ = eλ > 0 (41)

then using S|0, 0〉 =
√

µ
∫

(d2ξ/π)|ξµ〉e−|ξ|2/2 and equa-
tion (23), the CFFT of the wave function of the squeezed
state is

Fα (〈ξ|S |0, 0〉) = 〈η| exp
[
i (π/2 − α)

×
(
a†
1a1 + a†

2a2

) ]
S |0, 0〉 =

√
µ

∫
d2ξ

π

× 〈η| exp[i(π/2−α)(a†
1a1+a†

2a2)]|ξµ〉e−|ξ|2/2 =
−i

√
µ

2 sinα
eiα

×
∫

d2ξ

π
exp

(
i
(|η|2 + |µξ|2)

2 tanα
+ µ

ξη∗ − ηξ∗

2 sinα

)
e−|ξ|2/2

=

√
µeiα

i sinα + µ2 cosα
exp

[
i − µ2 tanα

2 (tanα − iµ2)
|η|2
]

. (42)

In summary, we have introduced the CFFT by virtue of
the quantum mechanical operator transform in |ξ〉−|η〉 en-
tangled representations. In this way the optical fractional
Fourier transform of complex functions can be converted
to its quantum mechanical correspondence. The link be-
tween the two aspects is established. The properties and
the essence of CFFT can be seen more clearly from the
point of view of entangled states representation transform
in quantum mechanics. The CFFT of wave functions in
the entangled state representation can be derived more
directly and concisely. The whole discussion in this work
explains the new application of entangled state represen-
tations in optical fractional Fourier transformation. We
expect some optical lens-setup could be constructed by
experimentalists to produce two-variable Hermite polyno-
mial eigenmodes and to demonstrate some other CFFT
functions in the future. Generally speaking, 2-dimensional
FFT (CFFT in this paper is a 2-dimensional FFT in the
convenient complex form) can be provided in a setup that
involves free-space propagation-lens-free-space propaga-
tion or lens-free-space propagation–lens. In the practical
realization by a lens, the conventional Fourier transform
is scaled by the lens focal length, and therefore CFFT
are also tied to it [19]. We also expect that the CFFT
can play the role in transmitting quantum information, in
constructing quantum imaging systems, once the CFFT
of quantum mechanical wave functions can be experimen-
tally realized.

I sincerely thank the referees for their helpful comments.
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